Standard Deviation

Example

1. Let $f(x)=e \cdot e^{x}$ for $x \leq-1$ and 0 otherwise. Find the standard deviation of this distribution.

Solution: First we need to find the mean of this distribution. The mean is

$$
\begin{gathered}
\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{-1} x\left(e \cdot e^{x}\right) d x+\int_{-1}^{\infty} 0 d x=e \int_{-\infty}^{-1} x e^{x} d x \\
=e\left(x e^{x}-\left.e^{x}\right|_{-\infty} ^{-1}\right)=e\left[\left(-e^{-1}-e^{-1}\right)-0\right]=-2
\end{gathered}
$$

To find the standard deviation, we first find the variance and then take the square root. There are two ways to do this, the latter is a bit easier

$$
\begin{aligned}
& \sigma^{2}=\int_{-\infty}^{\infty}(x-(-2))^{2} f(x) d x=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}=\int_{-\infty}^{-1} x^{2}\left(e \cdot e^{x}\right) d x-4 \\
& \quad=e\left(x^{2} e^{x}-2 x e^{x}+\left.2 e^{x}\right|_{-\infty} ^{-1}\right)-4=e\left(e^{-1}+2 e^{-1}+2 e^{-1}\right)-4=5-4=1
\end{aligned}
$$

So the standard deviation is $\sigma=1$.
2. Find the standard deviation of the set $\{1,2,3\}$.

Solution: First we find the mean, which is the average, and hence it is $\frac{1+2+3}{3}=2$. Then we calculate the variance which is

$$
\frac{(1-2)^{2}+(2-2)^{2}+(3-2)^{2}}{3}=\frac{2}{3}
$$

For statisticians, or something called an unbiased estimator, we divide by $N-1$ or 2 instead to get a variance of 1 . The standard deviation is thus $\sqrt{6} / 3$ or 1 .

Problems

3. True FALSE The standard deviation always exists.

Solution: The standard deviation requires the mean to exist, and sometimes that doesn't exist.
4. True FALSE Sometimes, we take the standard deviation to be the negative square root of the variance.

Solution: The standard deviation is always nonnegative.
5. TRUE False The variance is always nonnegative.

Solution: The variance is $\int(x-\mu)^{2} f(x) d x$ and both $(x-\mu)^{2} \geq 0$ and $f(x) \geq 0$ so $(x-\mu)^{2} f(x) \geq 0$ so the integral must be nonnegative too.
6. TRUE False If the mean doesn't exist, then the standard deviation doesn't exist.

Solution: The formula for the standard deviation requires the mean, so if the mean doesn't exist, then we can't talk about the standard deviation.
7. True FALSE If the mean exists, then the standard deviation exists.

Solution: It is possible for the mean to exist but the standard deviation not to exist. For example, the distribution $\frac{1}{x^{3}}$ on $x \geq 1$ has the mean existing but the standard deviation not.
8. Let $f(x)$ be $2 / 3 x$ from $1 \leq x \leq 2$ and 0 everywhere else. Find the standard deviation of this distribution.

Solution: First we find the mean as

$$
\int_{-\infty}^{\infty} x f(x) d x=\int_{1}^{2} 2 / 3 x^{2} d x=\left.\frac{2}{9} x^{3}\right|_{1} ^{2}=\frac{14}{9} .
$$

Then, to find the variance, we take
$\sigma^{2}=\int_{-\infty}^{\infty}(x-14 / 9)^{2} f(x) d x=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}=\int_{1}^{2} 2 / 3 x^{3} d x-(14 / 9)^{2}=\frac{5}{2}-\frac{196}{81}=\frac{13}{162}$.
Thus, $\sigma=\sqrt{13 / 162}=\sqrt{26} / 18$.
9. Let $f(x)$ be $-4 / x^{5}$ for $x \leq-1$ and 0 everywhere else. Find the standard deviation of this distribution.

Solution: First we find the mean as

$$
\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{-1}-4 / x^{4} d x=\left.\frac{4}{3} x^{-3}\right|_{-\infty} ^{-1}=\frac{-4}{3}
$$

Then, to find the variance, we take
$\sigma^{2}=\int_{-\infty}^{\infty}(x-(-4 / 3))^{2} f(x) d x=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}=\int_{-\infty}^{-1}-4 / x^{3} d x-(-4 / 3)^{2}=2-\frac{16}{9}=\frac{2}{9}$.
Thus, $\sigma=\sqrt{2 / 9}=\sqrt{2} / 3$.
10. Let $f(x)$ be the uniform distribution on $0 \leq x \leq 10$ and 0 everywhere else. Find the standard deviation of this distribution.

Solution: Since f is the uniform distribution on $[0,10]$, we know that $f(x)=\frac{1}{10-0}=$ $\frac{1}{10}$ on $[0,10]$ and 0 everywhere else. First we find the mean as

$$
\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{10} x / 10 d x=x^{2} /\left.20\right|_{0} ^{10}=5
$$

Then, to find the variance, we take
$\sigma^{2}=\int_{-\infty}^{\infty}(x-5)^{2} f(x) d x=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}=\int_{0}^{10} x^{2} / 10 d x-5^{2}=\frac{100}{3}-25=\frac{25}{3}$.
Thus, $\sigma=\sqrt{25 / 3}=5 \sqrt{3} / 3$.
11. Let $f(x)$ be $-2 x$ from $-1 \leq x \leq 0$ and 0 everywhere else. Find the standard deviation of this distribution.

Solution: First we find the mean as

$$
\int_{-\infty}^{\infty} x f(x) d x=\int_{-1}^{0}-2 x^{2} d x=-2 /\left.3 x^{3}\right|_{-1} ^{0}=\frac{-2}{3}
$$

Then, to find the variance, we take
$\sigma^{2}=\int_{-\infty}^{\infty}(x-(-2 / 3))^{2} f(x) d x=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}=\int_{-1}^{0}-2 x^{3} d x-(-2 / 3)^{2}=\frac{1}{2}-\frac{4}{9}=\frac{1}{18}$.
Thus, $\sigma=\sqrt{1 / 18}=\sqrt{2} / 6$.
12. Let $f(x)$ be $24 / x^{4}$ for $x \geq 2$ and 0 everywhere else. Find the standard deviation of this distribution.

Solution: First we find the mean as

$$
\int_{-\infty}^{\infty} x f(x) d x=\int_{2}^{\infty} 24 / x^{3} d x=-\left.12 x^{-2}\right|_{2} ^{\infty}=3
$$

Then, to find the variance, we take

$$
\sigma^{2}=\int_{-\infty}^{\infty}(x-3)^{2} f(x) d x=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}=\int_{2}^{\infty} 24 / x^{2} d x-3^{2}=12-9=3
$$

Thus, $\sigma=\sqrt{3}$.
13. Let $f(x)$ be the uniform distribution on $-20 \leq x \leq-10$ and 0 everywhere else. Find the standard deviation of this distribution.

Solution: Since f is the uniform distribution on $[-20,-10]$, we know that $f(x)=$ $\frac{1}{-10-(-20)}=\frac{1}{10}$ on $[-20,-10]$ and 0 everywhere else. First we find the mean as

$$
\int_{-\infty}^{\infty} x f(x) d x=\int_{-20}^{-10} x / 10 d x=x^{2} /\left.20\right|_{-20} ^{-10}=-15 .
$$

This could also be found by noting that the distribution is symmetric around -15 and that it is finite. Then, to find the variance, we take
$\sigma^{2}=\int_{-\infty}^{\infty}(x-(-15))^{2} f(x) d x=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}=\int_{-20}^{-10} x^{2} / 10 d x-(-15)^{2}=\frac{700}{3}-225=\frac{25}{3}$.
Thus, $\sigma=\sqrt{25 / 3}=5 \sqrt{3} / 3$.

Chebyshev's Inequality

Example

14. Let $f(x)=e \cdot e^{x}$ for $x \leq-1$ and 0 otherwise. Estimate the probability $P(-4 \leq X \leq 0)$. For what a can we say that $P(X \geq a) \geq 0.99$?

Solution: Since the mean is -2 and the standard deviation is 1 , using Chebyshev's inequality, we have that $P(-4 \leq X \leq 0)=P(\mu-2 \sigma \leq X \leq \mu+2 \sigma) \geq 1-\frac{1}{2^{2}}=\frac{3}{4}$. So an estimate would be $\frac{3}{4}$. The real answer is ≈ 0.95.
In order for $P(X \geq a) \geq 0.99$, we set $a=\mu-k \sigma$ and we know that $P(\mu-k \sigma \leq$ $X \leq \mu+k \sigma) \geq 1-\frac{1}{k^{2}}$. We want to set this lower bound to 0.99 and doing so gives $k=10$. Thus, we have that $P(\mu-10 \sigma \leq X \leq \mu+10 \sigma)=P(-12 \leq X \leq 8)=$ $P(-12 \leq X) \geq 0.99$. So, we have that $a=-12$.

Problems

15. True FALSE Chebyshev's inequality can tell us what the probability actually is.

Solution: Like error bounds, Chebyshev's inequality just gives us an estimate and not the actual probability.
16. True FALSE For Chebyshev's inequality, the k must be an integer.

Solution: We can take k to be any positive real number.
17. True FALSE Chebyshev's inequality can help us estimate $P(\mu-\sigma \leq X \leq \mu+\sigma)$.

Solution: Using Chebyshev's inequality, we get that this probability is greater than $1-1 / 1=0$ which we knew anyway because it is a probability.
18. Let $f(x)$ be $2 / 3 x$ from $1 \leq x \leq 2$ and 0 everywhere else. Estimate $P(10 / 9 \leq X \leq 2)$.

Solution: The mean is $14 / 9$ and so this probability is $P(14 / 9-4 / 9 \leq X \leq 14 / 9+$ 4/9). Letting $4 / 9=k \sigma=k \sqrt{26} 18$, we calculate that $k=\frac{8}{\sqrt{26}}$. Then, we have that $P(10 / 9 \leq X \leq 2) \geq 1-1 / k^{2}=1-1 /(64 / 26)=\frac{19}{32}$.
19. Let $f(x)$ be $-4 / x^{5}$ for $x \leq-1$ and 0 everywhere else. Estimate $P(X \geq-3)$

Solution: The mean is $-4 / 3$ and since $f(x)=0$ for all $x>-1$, we have that $P(X \geq-2)=P(-4 / 3-5 / 3 \leq X \leq-4 / 3+5 / 3) \geq 1-1 / k^{2}$. Here, we have that $5 / 3=k \sigma=k \sqrt{2} / 3$ and so $k=5 / \sqrt{2}$ and $1-1 / k^{2}=1-1 /(25 / 2)=\frac{23}{25}$.
20. Let $f(x)$ be the uniform distribution on $0 \leq x \leq 10$ and 0 everywhere else. Estimate $P(2 \leq X \leq 8)$.

Solution: The mean is 5 and so this probability is $P(5-3 \leq X \leq 5+3)$. Letting $3=k \sigma=k 5 \sqrt{3} / 3$, we calculate that $k=\frac{9}{5 \sqrt{3}}$. Then, we have that $P(2 \leq X \leq 8) \geq$ $1-1 / k^{2}=1-1 /(81 / 75)=\frac{2}{27}$.
21. Let $f(x)$ be $-2 x$ from $-1 \leq x \leq 0$ and 0 everywhere else. Estimate $P(-1 \leq X \leq-1 / 3)$.

Solution: First we know that $P(-1 \leq X \leq-1 / 3)=P(-2 / 3-1 / 3 \leq X \leq$ $-2 / 3+1 / 3) \geq 1-\frac{1}{k^{2}}$. Let $1 / 3=k \sigma=k / \sqrt{18}$. Then $k=\frac{\sqrt{18}}{3}=\sqrt{2}$ and $1-1 / k^{2}=$ $1-1 / 2=1 / 2$.
22. Let $f(x)$ be $24 / x^{4}$ for $x \geq 2$ and 0 everywhere else. Estimate $P(X \leq 5)$.

Solution: The mean is 3 and so $P(X \leq 5)=P(X \leq 3+2)=P(3-2 \leq X \leq 3+2)$ because $P(X \leq 1)=0$. Let $2=k \sigma=k \sqrt{3}$ so $k=2 / \sqrt{3}$. Then $1-1 / k^{2}=$ $1-1 /(4 / 3)=\frac{1}{4}$.
23. Let $f(x)$ be the uniform distribution on $-20 \leq x \leq-10$ and 0 everywhere else. Estimate $P(-18 \leq X \leq-12)$.

Solution: The mean is -15 and so this probability is $P(-15-3 \leq X \leq-15+3)$. Letting $3=k \sigma=k 5 \sqrt{3} / 3$, we calculate that $k=\frac{9}{5 \sqrt{3}}$. Then, we have that $P(2 \leq$ $X \leq 8) \geq 1-1 / k^{2}=1-1 /(81 / 75)=\frac{2}{27}$.

